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Abstract. This paper studies optimal spending for drug substitution pro-
grams in the context of a dynamic epidemic model of both drug use and drug
use-related infections. Two types of costs are considered in addition to control
costs: social costs resulting from individuals being dependent on drugs; addi-
tional costs due to drug users being vulnerable to infections like hepatitis C
or HIV. Analysis of the model demonstrates that the long-run equilibrium is
not necessarily unique. Instead, there may be multiple equilibria. Which of
these equilibria is optimal depends on the initial conditions for the number
of drug addicts and the number of those who are infected. So, for a given
set of epidemic parameters, it may be optimal to spend a lot on substitution
programs that reduce the number of drug addicts or to spend little and to
accept a high level of drug use.
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1. Introduction

Drug addiction imposes large costs on society. For the United States, Tami
et al. (Ref. 1) estimate the total cost of heroin addiction in 1996 to be USD
21.9 billion. For France, Kopp et al. (Ref. 2) calculate the direct costs of drug
addiction at EUR 0.73 billion. These numbers suggest that drug treatment is
necessary not only to help those who are addicted but also to reduce the economic
costs for society generally. Therefore, cost-benefit analyses should be conducted
which determine the optimal amount to be spent for drug treatment. In this paper,
we set up and analyze an optimal control model in order to determine the optimal
spending level for treatment of drug dependence in a dynamic perspective that
considers explicitly the spread of both drug use and infectious disease associated
with that use. Most prior work on infectious disease spread among drug users has
assumed that the number of drug users is a fixed constant and/or has not allowed
the intensity of the treatment intervention to vary over time. Drug injection is
the most common way that such diseases are spread and heroin is the most
commonly injected drug, so we couch the analysis in terms of substitute therapy
(e.g. methadone maintenance) for heroin dependence, but the framework might
also be relevant for other injected drugs (e.g. methamphetamine) or other vectors
of disease transmission.

In order to determine how much a social planner should spend for treatment,
first one has to identify the costs of drug addiction. One type of costs are those
resulting from drug purchase and use, notably criminal activities of drug addicts
and their suppliers and productivity losses due to the fact that drug addicts do not
contribute as much to the GDP. A distinct category of costs, especially associated
with injection drug users (IDUs), results from the fact that drug use can spread
costly infectious diseases such as hepatitis C (HCV), human immunodeficiency
virus (HIV) infections, and tuberculosis to mention just three. Parts but not all of
these costs9 can be avoided by treating the addicts.

A complete cost-benefit analysis would calculate total costs of treating drug
addicts and compare these to the benefits resulting from preventing all costs
which would occur without intervention. However, a simultaneous treatment of
all possible medical complications from drug addiction in an optimal control
model would be cumbersome and might or might not yield additional structural
insights. Therefore, generally one confines the analysis at least initially to one
type of medical complication associated with drug addiction (see e.g. Refs. 3–4).

In this paper, we consider the case of HCV infections, since injecting drug
use is a major risk for HCV infections and HCV is widespread among IDUs.

9 For example, it cannot be assumed that addicted users receiving treatment are as productive as people
not suffering from drug addiction.
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The rest of the paper is organized as follows. In Section 2, we present the
control model. Section 3 derives the dynamic system: first we study the analytical
model and then present a simulation study with empirically relevant parameters.
Section 4 gives an interpretation of the results. Finally, Section 5 concludes the
paper.

2. Model

We start the description of our model with the differential equation describing
the evolution of the number of IDUs. This equation is given by

Ṅ (t) = θ − δ(N (t) − M(t)) − µγM(t), N (0) = N0, (1)

with10 N representing the number of IDUs and M the number of addicts who
get methadone treatment. θ, δ, µ, γ are exogenous parameters with the following
interpretation: θ gives the exogenous increase in the number of IDUs due to
initiation or immigration; δ is the per capita outflow of IDUs who do not receive
methadone treatment, including outmigration, death, and quitting without the
assistance of the treatment control intervention considered here; µ gives the exit
rate from IDUs due to methadone treatment; γ is the proportion of those exiting
who do not relapse.

The treatment community often rejects terminology of “curing” addiction,
which is seen as a chronic relapsing disease, but for those outside the medical
community it may be a useful shorthand to think of this as a “cure rate.” Defining
U ≡ M/N ∈ (0, 1) and a ≡ µγ − δ, equation (1) can be rewritten as

Ṅ = θ − δN − aUN, N (0) = N0. (2)

A certain proportion of IDUs are infected by HCV. Infection among IDUs is
spread by sharing injection equipment (syringes, cookers, etc.), which we refer to
in shorthand as “needles.” As in Ref. 3, the number of infected IDUs, denoted by
I, evolves according to the following differential equation:

İ = κψ(1 − M/N)(�N − 1)[I/(�N )]

− δI (1 − M/N) − µγM(I/N), I (0) = I0. (3)

The parameter � denotes the fraction of IDUs who engage in needle sharing.
Those who do not share are not at risk of infection, but they do “absorb” treatment
slots and impose costs on society due to their drug use. The parameter ψ is the
frequency with which IDUs share needles. In the literature, this is sometimes
called visiting “shooting galleries,” places where IDUs take drugs and randomly
mix with others present at these locations. There are other types of sharing with

10 In the following, we omit the time argument t.
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variation across regions in which modalities predominate, but such details are not
essential for the present purposes. The probability of infection in the case of needle
sharing is given by κ .

Thus, the terms on the right-hand side of (3) have the following interpreta-
tions. The first term gives the frequency with which noninfected IDUs who do
not receive methadone treatment go to shooting galleries, ψ(1 − M/N)(�N − I ),
times the probability of meeting an infected IDU there, I/(�N ), times the prob-
ability of infection given such a meeting κ . This term gives the gross increase in
the number of infected IDUs per time period. The second term on the right-hand
side gives the outflow of infected IDUs without intervention; the last term is the
incremental decline in infected IDUs due to methadone treatment. The sum of
these three terms describes the total change in the number of infected IDUs per
time period.

Defining b ≡ κψ, f ≡ κψ/� and recalling the definition of U and a, we can
rewrite equation (3) as follows:

İ = I [(1 − U )(b − f I/N ) − δ − aU ], I (0) = I0. (4)

As is obvious from equations (2) and (4), both the total number of IDUs and the
number of infected IDUs are reduced by the methadone treatment.

As to the costs of the methadone treatment, we assume that they are given by

C(M) = αM + βM2,

with α, β > 0, or using U = M/N, by

C(NU ) = αNU + β(NU )2.

The assumption of a quadratic cost function reflects two types of diminishing
returns. First, there is heterogeneity across IDUs in the treatment effectiveness,
and the easier to treat are usually treated first (“cream skimming”). So, for every
additional IDU treated, more money needs to be spent on methadone treatment
in order to achieve the same result. Second, it is more difficult to motivate an
additional IDU to go into methadone treatment if the group of people getting
treatment is already large. The unit costs of an IDU, N, are given by ρ and the
additional costs of an infected IDU, I, are denoted by ν. It should be noted that the
number of IDUs is composed of both infected and noninfected IDUs. Thus, our
formulation of the costs implies that we can identify the additional costs generated
by an IDU being infected.

Examples of costs due to current drug use include costs from drug the addicts
criminal activities and reduced productivity, as mentioned already in the Introduc-
tion. These costs are best modeled as a constant cost per active user. In contrast,
the present value of all future costs of treating an HCV infection are charged in the
objective function at the time of infection, because the future trajectory of costs is
largely independent on whether the individual is or is not in methadone treatment.
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Furthermore, society would continue to pay those costs of treating HCV even if
the individual stopped using drugs and hence left the model. It should also be
pointed out that only the averted costs of addicts not becoming infected due to
methadone treatment is of relevance. This holds because infected people at any
time will remain infected and need treatment independently of whether or not they
receive methadone treatment or indeed whether they continue to inject drugs. If
infected people receive methadone treatment, only the costs due to their being
addicted to drugs can be avoided. Thus, there is a qualitative difference in the
costs caused by somebody being infected and by a noninfected drug addict.

The optimization problem then is to design a methadone program intensity
over time such that the total cost is minimized subject to the equations giving the
evolution of the total number of IDUs and of the number of infected IDUs. These
consist of the costs for the program itself, the costs of people being drug dependent,
and the costs of new infections, which can be avoided by methadone programs.
Denoting with r the planner intertemporal discount rate, the optimization problem
is formally written as

max
U∈(0,1)

∫ ∞

0
exp(−rt)

[ − αNU − β(NU )2

− ρN − νI (b − f I/N )(1 − U )
]
dt, (5)

subject to (2) and (4).
In the following, we define the new variable

P = I/N.

The dynamics of P then is given by

Ṗ = P (İ /I − Ṅ/N).

This gives

Ṗ = P [(1 − U )(b − f P ) − θ/N], P (0) = I0/N0. (6)

The optimization problem then is rewritten as

max
U∈(0,1)

∫ ∞

0
exp(−rt)

[ − αNU − β(NU )2

− ρN − νPN (b − f P )(1 − U )
]
dt, (7)

subject to (2) and (6).
To solve this problem, we formulate the current-value Hamiltonian

H (·) = −νPN (b − f P )(1 − U ) − Nρ − αNU − βN2U 2

+ λ1(−δN + θ − aNU ) + λ2P [(1 − U )(b − f P ) − θ/N]. (8)
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The necessary optimality conditions are given by

∂H/∂U = 0 ↔ U = −(
αN + aλ1N + bλ2P

− bNνP − f λ2P
2 + f NνP 2

)
/
(
2βN2

)
, (9)

λ̇1 = rλ1 − ∂H/∂N, (10)

λ̇2 = rλ2 − ∂H/∂P. (11)

Further, we posit that the limiting transversality condition,

lim
t→∞ exp(−rt)(λ1N + λ2p) = 0,

must be fulfilled.

3. Dynamic Behavior

3.1. Dynamics of the Model with a Nonoptimal Control. Before we study
the dynamics of the model with U chosen optimally, we analyze the two differential
equations (2) and (6) for a constant and arbitrarily chosen U. With this assumption,
there exist two solutions to Ṅ = 0 and Ṗ = 0 given by11

N̄ = θ/(δ + aU ), P̄ 1 = 0,

and by

N̄ = θ/(δ + aU ), P̄ 2 = [δ − b + U (a + b)]/[f (U − 1)].

P̄ 2 > 0 can exist only for

U < (b − δ)/(a + b).

This implies that the second stationary point exists only if b, the product of the
probability of infection and the frequency with which IDUs come to shooting
galleries, is smaller than the outflow of IDUs per time period. Or stated in another
way, if the outflow of IDUs is sufficiently large, only the boundary solution P̄ 1 = 0
exists.

The eigenvalues of the Jacobian at (N̄, P̄ 1) are given by

µ1
1 = −δ − aU and µ1

2 = −δ − aU + b(1 − U ).

This shows that, for δ > b, both eigenvalues are negative. For δ < b, both eigen-
values are negative if

U > (b − δ)/(a + b),

11 The bar denotes stationary values.
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while one eigenvalue is positive and one is negative for

U < (b − δ)/(a + b).

The eigenvalues at the second stationary point (N̄, P̄ 2) are obtained as

µ1
1 = −δ − aU and µ1

2 = δ + aU − b(1 − U ).

Since

U < (b − δ)/(a + b)

must hold for the second stationary point to be reasonable, both eigenvalues are
negative at this stationary point.

The optimal control U depends on N, P and their shadow prices and affects
the dynamics of the model. Thus, it is to be expected that a more complex dynamic
behavior may be the outcome of the optimally controlled model.

3.2. Optimal Control, Analytical Results. Inserting (9) in equations (2),
(6), (10), (11), we get an autonomous differential equation system describing the
evolution of our model over time. This system is given by

Ṅ = −δN + θ − aNU (·), (12)

Ṗ = P [(1 − U (·))(b − f P ) − θ/N], (13)

λ̇1 = λ1r + ρ − λ2Pθ/N2 + ν
(
bP − f P 2

)
(1 − U (·)) + αU (·)

+2βNU 2(·) − λ1(−δ − aU (·)), (14)

λ̇2 = λ2r − λ2[−θ/N − f P (1 − U (·)) + (b − f P )(1 − U (·))]
+ ν(bN − 2f NP )(1 − U (·)), (15)

with U (·) given by (9). Stationary points are solutions to the system Ṅ = Ṗ =
λ̇1 = λ̇2 = 0. To find such solutions, we proceed as follows. First, we set λ̇1 = 0
and solve this equation with respect to λ1 giving λ1 = λ1(N,P, λ2, ·). Insert-
ing λ1(N,P, λ2, ·) in equation (12), setting Ṅ = 0 and solving this equation
with respect to λ2 yields λ2 = λ2(N,P, ·). Inserting λ1(N,P, λ2(N,P, ·), ·) and
λ2(N,P, ·) in equation (13) leads to an equation which depends only on N and P.
Setting this equation equal to zero and solving for P yields two solutions given by

P̄ 1 = 0, (16)

P (N, ·) = (abN + bδN − aθ − bθ )/[f (aN + δN − θ )]. (17)

A first stationary point is obtained by setting P = 0 and solving Ṅ = 0 and λ̇2 = 0
with respect to λ1 and λ2 respectively, giving λ1 = λ1(N, ·) and λ2 = λ2(N, ·).
Inserting P = 0, λ1 = λ1(N, ·) and λ2 = λ2(N, ·) in equation (14), setting that
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equation equal to zero, and solving with respect to N gives N̄1 as a function of pa-
rameters alone. The stationary point E1 then is obtained as E1 = (N̄1, P̄ 1, λ̄1

1, λ̄
1
2),

with

N̄1 = {a[α(δ + r) − aρ] + 2β(δ + r)θ}/[2βδ(δ + r)], (18)

P̄ 1 = 0, (19)

λ̄1
1 = −ρ/(δ + r), (20)

λ̄1
2 = K1/K2, (21a)

K1 = bν[aα(δ + r) − a2ρ + 2β(δ + r)θ ]

·{−a2ρ + a[α(δ + r) − δρ] + (δ + r)(αδ + 2βθ )}, (21b)

K2 = 2βδ(δ + r){a2(−b + r)ρ + a[α(b − r)(δ + r) − bδρ]

+ (δ + r)[αbδ + 2β(b − δ − r)θ ]}. (21c)

It should be noted that λ1 (the shadow price of N) is always negative while λ2 (the
shadow price of P) may be negative or positive. This holds because more IDUs
implies higher costs, whereas the effect of the number of infected on total costs
is not unambiguous. The latter is due to the fact that only the number of averted
infections matters as outlined above.

The control at this stationary point Ū 1 is obtained as

Ū 1 = −δ[α(δ + r) − aρ]/{a[α(δ + r) − aρ] + 2β(δ + r)θ}. (22)

It should be noted that Ū 1 ∈ (0, 1). In order to get a positive value for Ū 1, i.e.
Ū 1 > 0, aρ > α(δ + r) must hold.12 This shows that, in order to eradicate HCV
infection among IDUs, spending money for methadone in the long-run can only
be optimal if the cost of methadone treatment α is low compared to the cost caused
by drug addicts ρ and if the “cure rate” of treatment a is high. Intuitively, this is
clear because it cannot be optimal from an economic point of view to reduce the
number of infected IDUs to zero when the costs of treatment are high or the cure
rate is small.

Other stationary points are obtained as follows. We insert

P (N, ·) = (abN + bδN − aθ − bθ )/[f (aN + δN − θ )]

in equation (15). This gives a function g(N, ·) which depends only on N and the
parameters. Setting g(N, ·) = 0 and solving that equation with respect to N then
gives the stationary points N̄ as a function of the parameters alone. It should be
noted that the solutions of g(N, ·) = 0 must be such that P̄ ∈ (0, 1) is satisfied,

12 Note that the denominator is positive. Otherwise, N̄1 would be negative.
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in addition to Ū 1 ∈ (0, 1). However, the equation g(N, ·) = 0 cannot be solved
analytically, but only with numerical values for the parameters.

To study the local dynamics, we calculate the Jacobian matrix at the stationary
point under consideration, which in principle can be computed for the analytical
model. However, doing so does not yield insights in the dynamics, since the matrix
becomes very complicated. Therefore, we restrict our analysis in what follows to
numerical examples with realistic parameter values.

What we can say as concerns the analytical model is that the model has at
most a saddle point, i.e. the Jacobian cannot have only negative eigenvalues or
eigenvalues with only negative real parts. This holds because the Jacobian matrix
for that type of control models can be written as

J =
⎛
⎝ H 0

λx H 0
λλ

−H 0
xx −H 0

xλ + rE

⎞
⎠ ,

with E being the identity matrix, H 0 is the maximized Hamiltonian, and x =
(N,P ). The eigenvalues of that matrix are

µ1 = (r/2) + ξ̄ and µ1 = (r/2) − ξ̄ ,

where ξ̄ is the eigenvalue of the matrix F (r/2) (see Ref. 5, Theorem 2), that is
given by

F (r/2) =
⎛
⎝ H 0

λx − (r/2)E H 0
λλ

−H 0
xx −H 0

xλ + (r/2)E

⎞
⎠ .

3.3. Simulation Study. Next, we compute the solution for numerically spec-
ified parameter values which are empirically relevant13 and where we consider
one time period as one year. The computations were done with Mathematica, see
Ref. 6.

The exit rate from the active IDU population δ is based on the average of
those in the Kaplan “needles that kill” study (Ref. 7) and in the Thomas et al. report
from the Baltimore ALIVE cohort (Ref. 8). In particular, Kaplan used a figure
of 1/2920 = 3.42 × 10−4; Pollack (Ref. 4), adjusting the ALIVE data for length-
biased sampling, suggests 1/6319 = 1.58 × 10−4. The average, δ = 2.5 × 10−4

implies an average career length of 4000 days or about 11 years.
The inflow parameter θ linearly scales the population to the size of the city

being modelled; as in Ref. 3, we take that to be a new user every other day (θ =
183 per year) implying that, in the absence of treatment, the steady state population

13 Most of these values are taken directly from Refs. 3–4.
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would be θ/δ = 2000. That means that, we are modelling a small city or a large
neighbourhood within a city, though again, the results are independent of scale.

The exit rate due to treatment µ is 0.9125 and the permanent cure rate γ is
0.2. These parameters imply that the parameter a is equal to 0.09125.

Pollack (Ref. 4) considers a range of infectivities between 0.005 < κ < 0.05
and concludes that those toward the upper end of the range better model the rapid
spread of HCV, so we set κ = 0.04.

As has been customary in OR models of injection drug use since the Kaplan
pioneering work (Ref. 7), we assume that the injection drug users visit shooting
galleries once per week, so ψ = 52 per year.

As in Ref. 9, the proportion of shooting gallery participants � is 30 percent.
These parameter values give b = 2.08, f = 6.93 for HCV.

The cost per year of one IDU is ρ = 6000. A reasonable assumption as to
the lifetime costs of an HCV infection is between 7300 USD and 18250 USD
implying for ν about ν ∈ [1000, 13000]; cf. Ref. 10. We set in our simulations
ν = 8000 as benchmark. The costs of the methadone program are 4015 USD per
patient per year. We assume a convex cost function and set α = 4014 and β = 1
implying C(1) = 4015. As is customary in medical cost-effectiveness analysis,
we set the annual discount rate to r = 0.03 (Ref. 11).

3.3.1 Boundary Stationary Solution P̄ = 0. The first stationary point E1 =
(N̄1, P̄ 1, λ̄1

1, λ̄
1
2) is given by E1 = (1754.747, 0,−49484.536, 1.51107). Here and

throughout, results are stated with high precision to make it easier for others
to replicate them, but it should be understood that simplifications inherent in the
modeling and imprecision in the parameter value estimates imply that the solutions
for a substantive perspective do not have this degree of precision. The control at
the stationary point is Ū 1 = 0.143. The eigenvalues associated with this stationary
point are

µ1
1 = −1.648505, µ1

2 = −0.09125, µ1
3 = 0.12125, µ1

4 = 1.678505.

This shows that the stationary point is a saddle point.
Varying the parameter ν between ν = 1000 and ν = 14000 with a stepsize

of 1000 does not change the qualitative outcome.14

3.3.1. Interior Stationary Solutions. Solving g(N, ·) = 0 yields three feasi-
ble interior stationary solutions,15 namely:

E2 = (N̄2, P̄ 2, λ̄2
1, λ̄

2
2)

= (1048.022, 0.009,−56136.066,−4.045107), with Ū 2 = 0.914,

14 This was to be expected, since λ̄1
2 depends only on ν.

15 There is a fourth interior solution which, however, is not feasible, since it implies Ū > 1.
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E3 = (N̄3, P̄ 3, λ̄3
1, λ̄

3
2)

= (1122.435, 0.19,−55435.717, 3.398106), with Ū 3 = 0.787,

E4 = (N̄4, P̄ 4, λ̄4
1, λ̄

4
2)

= (1734.813, 0.282,−49672.157, 1.296107), with Ū 4 = 0.156.

The eigenvalues µ1,2,3,4 of the Jacobian matrix associated with these stationary
points are given by

(E2) µ2
1,2 = 0.158241 ± 0.0951999i, µ2

3,4 = −0.128241 ± 0.0951999i,

(E3) µ3
1,2 = 0.015 ± 0.437164i, µ3

3 = 0.225219, µ3
4 = −0.195219,

(E4) µ4
1 = 1.66122, µ4

2 = −1.63122, µ4
3 = 0.119684, µ4

4 = −0.089684.

This implies that the second stationary point E2 is a saddle point with complex
conjugate eigenvalues. The third stationary point E3 is unstable with the exception
of a one-dimensional stable manifold; the fourth stationary point E4 is a saddle
point with real eigenvalues.

Again, we varied the parameter ν between ν = 1000 and ν = 14000. For all
ν ∈ [2873, 14000], we get the same outcome from a qualitative point of view,
i.e. three feasible interior solutions, with two being saddle point stable and one
being unstable. For ν smaller than 2873, however, only the fourth stationary point
is a feasible interior solution, while the other two stationary points do not yield
plausible values but are complex conjugate numbers. Further, this stationary point
is a saddle point with two negative and two positive real eigenvalues.

The result that there are two saddle point stable stationary points and one
unstable stationary point for ν ∈ [2873, 14000] suggests that there exists a thresh-
old or DNS (Dechert-Nishimura-Skiba) curve16 which separates the basins of
attraction for optimal paths. This means that the initial conditions are crucial as to
whether it is optimal to converge to E2 or E4. Only if the initial values of N and P
are on the DNS curve is the planner indifferent between the two stationary points,
because they yield the same value for (7). In all other cases, only convergence to
one of the two saddle points is cost minimizing.

To demonstrate that a DNS curve does exist in our model, we fix the parameter
ν and set it to ν = 12000. Figure 1 shows the resulting paths leading to the
equilibria E2 and E4 in the (N,P ) space.

The DNS curve splits the state space into two regions of optimal convergence.
If the starting values of infected per IDUs, P (0), and of IDUs, N (0), lie in
the grey shaded area, it is optimal to converge to equilibrium E2 = (N̄2, P̄ 2) =
(1048, 0.009). If the starting values lie in the white shaded area, then it is optimal
to converge to equilibrium E4 = (N̄4, P̄ 4) = (1734.8, 0.282).

16 Named after Dechert and Nishimura (Ref. 12) and Skiba (Ref. 13), who did seminal work within
this field.
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Fig. 1. Picture of the global dynamics with parameter values specified in Section 3.3. The DNS curve
is the border between the grey shaded area [convergence to E2 = (1048, 0.009)] and the white
shaded area [convergence to E4 = (1734, 0.282)].

Figure 1 gives a picture of the global dynamics with parameter values as
specified above. Another interesting question is for which values of ν, which
determine the cost of a new HCV infection, does such a threshold exists. In our
example, it turns out that this holds for ν ∈ [9355.4, 13253.6]. If ν is smaller
than 9355.4, no DNS curve exists and the only equilibrium is E4, where both the
number of infected and noninfected IDUs is high.17 If ν is larger than 13253.6, it
is always optimal to spend a lot for methadone treatment and to reduce the number
of infected IDUs to a great degree. In this case, again no DNS curve exists and the
only feasible equilibrium is E2.

It should be mentioned also that the domain of ν for which a threshold exists
depends also on the infectivity κ . The larger the infectivity, the larger is the interval
of ν for which a DNS curve exists. For example, for κ = 0.08, a DNS curve exists
for ν ∈ [9168, 13391]. Further, with a rising κ , the DNS curve moves up and to
the right.

Not surprisingly, whether or not a DNS curve exists depends also on the
value of the discount rate r . Above, we showed that, for the given parameter
values, a DNS curve exists if r = 0.03. Leaving all other parameters at their
base case values (see beginning of Section 3.3), we find that a DNS curve arises
for r ∈ [0.016, 0.125], separating the equilibria with high and low levels of the

17 The exact numerical values of the equilibrium depend of course on the value of ν.
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control, respectively. However, if r < 0.016 (i.e., the social planner is rather
far-sighted), then it is always optimal to converge to an equilibrium with low
numbers of infected and noninfected IDUs by using rather high levels of treatment;
for r > 0.125 (rather myopic social planner), optimal convergence is always to
a stationary state with zero treatment spending and hence high numbers of IDUs
(both infected and noninfected).

4. Interpretation of the Results

The analysis of the dynamics has demonstrated that the long-run optimal
behavior may depend crucially on the initial conditions both as concerns the total
number of IDUs as well as concerns the number of infected IDUs relative to
the total number of IDUs. If there are no infected IDUs at t = 0, the boundary
solution P = 0 is the optimal solution in the long run. This result seems to be
obvious because, in this case, there is no HCV infection and there are only costs
due to the consumption of drugs. Therefore, this boundary solution exists also
independently of the additional costs caused by an IDU being infected, denoted
by ν in our model. But it must be repeated that this long-run solution is feasible
only if the cure rate due to methadone treatment, the exit rate of drug users due to
treatment, and if the costs of an noninfected IDU are relatively high (as to this point
see also the discussion in Section 3.2). However, there may exist also an interior
long-run solution which goes along with a small value of the ratio of infected
IDUs relative to the total number of IDUs. But such a long-run solution can be
obtained only by a high intervention, that is, by a large amount for methadone
spending (see the following remarks).

Besides this boundary solution, one or two saddle point stable interior long-
run optima may exist depending on the cost of a new infection. When there are two,
the first interior optimum implies a low number of infected IDUs and a low total
number of IDUs. This solution is generated by funding a high ratio of methadone
treatment “slots” relative to the total number of IDUs. This means that, in this
situation, it is optimal to spend a lot for methadone programs in order to reduce
the number of both infected and noninfected IDUs. In Figure 1, the dashed lines
in the grey-shaded area show paths of optimal policies with intensive methadone
treatment. However, it is only optimal to converge to this solution if the initial
number of IDUs and infected IDUs is relatively small. Further, this solution exists
only if the cost per HCV infection exceeds a certain value which is about 2873
(i.e. for ν ≥ 2873) in our example. This is plausible because, with lower costs of
HCV, it cannot be optimal to spend a lot for methadone projects in order to reduce
HCV infections.

The second interior solution implies a high number of total and infected IDUs
but a small amount of methadone treatment. In this situation, it is economically
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optimal to spend less for methadone programs and to accept a high number of
addicts. If the initial values of IDUs and infected IDUs are relatively large, it is
optimal to converge to this equilibrium in the long run. In this case, spending for
methadone programs is small and we may speak of “accommodation” policies.
This holds although it would be possible to control the system so that it converges
to E2 as the dashed lines starting in the white area in Figure 1 show. However,
such policies are not cost optimal. Loosely speaking, it is too expensive to reduce
the number of IDUs when the initial number is high. The dotted lines in the white
area in Figure 1 show optimal paths of prototypical accommodation policies. Only
if the initial values P (0) and N (0) lie on the curve which separates the two areas
is the planner indifferent ion whether the equilibrium E2 or E4 is obtained in the
long run. This holds because, in this case, convergence to E2 yields the same value
for (7) as convergence to E4.

This shows that, for certain values of the cost associated with a new infection,
a threshold exists so that the initial conditions are crucial as to which equilibrium
the system converges to in the long run. However, if the costs of a new infection are
extremely high (i.e. higher than 13253.6 in our example), no threshold exists and it
is always optimal to spend a lot for methadone and to reduce the number of infected
IDUs. If the costs of a new infection are lower than 9355.4, an accommodation
policy turns out always to be optimal leading to a large number of infected IDUs
in the long run, although other equilibria exist. In both these cases, the long-run
outcome is independent of the initial conditions. When the cost of a new infection
lies between these two boundaries, then the initial conditions matter and determine
the long-run outcome. If the costs are smaller than 2873, the accomodation solution
is the only feasible long-run outcome, because no other interior equilibrium with
real values exists.

The values of the cost of a new infection for which a DNS curve exists
depend also on the infectivity. The higher the infectivity, the larger the interval is
for which a threshold exists. This means that, with a high infectivity, a threshold
can exist even for lower or higher values of the cost of a new HCV infection.
From an economic point of view, this means that the optimization problem for
the planner is more likely to become complex when the infectivity is high. With a
high infectivity, the planner must be aware that the optimal long-run solution may
depend crucially on the initial number of infected and noninfected IDUs.

5. Conclusions

This paper has demonstrated that the long-run stationary solution to an op-
timal control problem, which is to alleviate the negative economic consequences
of drug addiction, may not be unique. Using empirically plausible values, we
could demonstrate that the optimal spending for drug substitution programs may
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depend crucially on initial conditions as concerns the number of drug users and
the number of infected users. Thus, it may be that the optimal long-run solution
is characterized by a relatively small amount spent for drug substitution programs
and by a high number of drug addicts or vice versa.

We want to stress that our model can be seen as an exercise in cost-benefit
analysis because it compares the cost of a certain health program to its benefits.
Given the result of our analysis, it becomes clear that this task may be a complex
one. So, the policy maker should be aware of the fact that there can be more than
one optimal long-run solution depending on the starting values. The conditions
determining which long-run solution is optimal in our model can be also of help
for the policy maker to find an optimum in reality. This holds because our study
gives hints as to when it is optimal to spend a lot for methadone projects and when
the reverse holds.

There are several opportunities for refinements and further work. Notably,
the initiation rate or inflow of new users could be made a function of the current
number of users (cf. Refs. 14–15). Alternatively, the policy maker could jointly
optimize spending on both treatment and other drug control interventions such as
enforcement (cf. Ref. 15). Finally, one could imagine an expanded state space that
explicitly tracked the number of users who are infected with either or both of two
or more types of infections.
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